Siirry sisältöön

Näkökulman vaihtaminen on usein hyödyllistä ja hauskaakin. Mitä jos shiba näyttäytyisi hetken ajan DNA:han pohjautuvana eliönä? Maapallolla tunnettu elämä perustuu nukleiinihappoihin, joihin säilötään tietoa ja joilla on ainutlaatuinen kyky monistaa itseään. Eliöt voi ajatella DNA:n ympärilleen rakentamina kuorina. Elämän historia on jäljitetty (älä kysy miten) alkamaan noin neljä miljardia vuotta sitten. Koska ihmismieli ei pysty hahmottamaan miljardien suuruusluokan merkitystä, käytetään ajankulun havainnollistamiseen monesti kellovertausta, jossa planeetan koko historia on tiivistetty 12 tuntiin.

Elämä ilmestyy planeetalle noin kello kaksi. Eliöt ovat pitkään hyvin yksinkertaisia, ja ekat monisoluiset ilmaantuvat vasta kello kahdeksan maissa. Nisäkkäitä on ollut olemassa viimeisen tunnin ajan ennen puoltapäivää. Kuvassa juuri ja juuri erottuva "First Hominins"-täppä ennen nykyhetkeä kuvaa ihmisapinoiden olemassaoloa. Ajallisesti se vastaa kahta miljoonaa vuotta. Nykyihmisiä on ollut olemassa silmänräpäyksen ajan, ja ihmisen shibaksi nimeämiä rotukoiria mitättömän hetken olematon murto-osa. Silti elämän periaate niissä on ikivanhaa.

Vuoristoalueiden pieniä japanilaiskoiria 1900-luvun alussa.

Kainkoira Yamanashista. Kuva (c) Vanha japanilaisen koiran valokuva-albumi

Blogissa on aiemmin käyty läpi shiban värigenetiikan kannalta olennaiset lokukset E (värillinen vai valkoinen), A (perusväri) ja S (pinto ja sukat). Muut tunnetut värilokukset eivät tiettävästi vaikuta shibojen keskinäiseen värivaihteluun, koska kaikilla shiboilla on näistä sama versio. Esimerkiksi tämän postauksen aiheena olevassa K-lokuksessa nykyshiboilla on vain tylsää tavisversiota ky, joka sallii A-lokuksen määrätä värin. Joillakin japanilaisroduilla, kuten akitalla ja kainkoiralla, K-lokuksessa esiintyy myös raidallisen brindlekuvioinnin aiheuttavaa versiota. Tai ehkä on viisainta sanoa, että ainakin nykytiedon valossa brindleväritys yhdistetään K-lokukseen. Jännittävän näköiset tiikeriraidat syntyvät niin erikoisella tavalla, ettei niiden salaisuutta ole vielä saatu selville.

K niin kuin blacK

Brindlevärityksen opiskelu on aloitettava K-lokuksen ominaisuuksista. K-lokus on värigenetiikassa uusi tekijä, sillä sen löytyminen raportoitiin vasta vuonna 2007. Tämä ei koske japanilaisrotuja, mutta K-lokuksessa esiintyy dominoivaa versiota KB, joka saa aikaan täysmustan värityksen. Siksi K-lokus on nimetty sanan black viimeisen kirjaimen mukaan (B-lokus oli jo käytössä brownille.)

Miksi muuten puhutaan välillä lokuksesta ja välillä geenistä? Entä geenimuoto, versio, alleeli? K-lokus havainnollistaa uutuutensa ansiosta hyvin termien käyttöä. Kun K-lokus ensimmäistä kertaa raportoitiin, oli siitä saatu selville vasta sen summittainen sijainti kromosomin numero 16 kärjessä. Lokus tarkoittaa lokaatiota, siis vakiopaikkaa kromosomissa. Lisäksi risteytysanalyyseistä ja sukupuista oli päätelty, että K-lokuksessa esiintyi kolmea alleelia, jotka saivat aikaan täysmustan, brindlen ja "tavallisen" värisiä koiria tuossa dominanssijärjestyksessä. Vasta tämän jälkeen K-lokuksen kohtaa kromosomissa tutkittiin tarkemmin ja löydettiin sieltä geeni, joka olikin aivan muusta yhteydestä jo valmiiksi tunnettu. Geenin määritelmään kuuluu, että siitä valmistuu jotakin geenituotetta, joko proteiinia tai toiminnallista RNA-molekyyliä. Jos tätä ei ole tutkimuksilla osoitettu, ei oikeastaan voida vielä puhua geenistä. Siispä lokus.

Alleeli ja sen arkikielinen vastine "versio" on saman lokuksen vaihtoehtoisia muotoja. Osoite on sama (kromosomi 1, käsivarsi p, raita 3, alaraita 2 jne. edelleen tarkentuen) mutta siellä sijaitsevan DNA-pätkän kirjaimissa on jonkin verran eroa. Suomeksi alleeli käännetään usein geenimuodoksi... mutta kuten edellä todettua, geenimuodosta voidaan puhua vain jos kyse oikeasti on geenistä. Esimerkiksi monimuotoisuusjuttujen yhteydessä on pakko käyttää alleelia, koska niissä aniharvoin tutkitaan geenejä (pohdintatehtävä: miksi ei järjenvastaisesti tutkita monimuotoisuutta geeneistä?).

Molly. Musta brindleraidoitus ilmestyy akitalla punaisen värin päälle. Kuva: Peter Theakston https://creativecommons.org/licenses/by/2.0

Takaisin K-lokukseen ja sen kolmeen havaittuun versioon/alleeliin, jotka ovat:

  • KB (K-lokuksen dominoivin "Black"-alleeli, josta alkukirjain iso B)
  • kbr (K-lokuksen oletettu "brindle"-alleeli, joka tunnetaan vielä erittäin huonosti)
  • ky (K-lokuksen resessiivisin "yellow/muut värit"-alleeli, siksi pienet kirjaimet)

Yhteen koiraan mahtuu näitä vain kaksi kappaletta, yksi emolta peritty ja yksi isältä peritty alleeli. Ne voivat olla keskenään samanlaiset tai erilaiset. Koko rodussa eri koirilla yhteensä voi sen sijaan esiintyä vaikka kaikki mahdolliset tietyn lokuksen alleelit. Alleelien dominoivuuden ja resessiivisyyden merkityksen voi nyt päätellä, jos se ei ole jo tuttu ilmiö.

Värigeenistä valmistuu antibioottia

Luit oikein. K-lokuksessa sijaitseva geeni on nimeltään koiran betadefensiini 103 (CBD103, canine beta defensin 103). Sen ohjeella valmistetaan erästä defensiiniä, joka nimensä mukaisesti liittyy puolustautumiseen eli immuunijärjestelmän toimintaan. CBD103 on pieni peptidi eli proteiinia lyhyempi aminohappojen ketju. Laboratorio-oloissa on osoitettu, että se pystyy tuhoamaan sellaisia pöpöjä kuin E. coli ja S. aureus.

K-lokuksen geenituote. Jokainen kirjain vastaa tiettyä aminohappoa ketjussa.

Armoton kilpailu kytkimestä

Miten antibioottina toimiva molekyyli voi värjätä koko koiran mustaksi? Ja minkä ihmeen takia? Vain ensimmäiseen kysymykseen on olemassa vastaus. Dominanttimustilla koirilla K-lokuksen defensiinissä on havaittu mutaatio, jonka uskotaan muuttavan defensiinin käyttäytymistä. Mutanttidefensiini, josta on pudonnut pois yksi ainoa glysiini-aminohappo, sitoutuu nyt hanakasti pigmenttisolujen pigmenttikytkimeen ja kääntää pigmenttituotannon mustalle. Kasvavaan karvaan pakataan mustaa pigmenttiä. Normaalitilanteessa samaa pigmenttikytkintä operoi A-lokuksesta valmistuva pikkupeptidi niin että kytkin on vuoroin mustan pigmentin (eumelaniini) ja vuoroin punakeltapigmentin (feomelaniini) asennossa. K-lokuksen mutanttidefensiini syrjäyttää A-lokuksen pikkupeptidin sitoutumispaikasta samalla ajatuksella kuin häkä syrjäyttää hapen hemoglobiinista. Mutanttidefensiiniä tuotetaan K-lokuksen alleelista KB. Tavallinen defensiini, jota tuotetaan alleelista ky, antaa A-lokuksen säädellä pigmenttikytkintä, jolloin A-lokuksen värit tulevat näkyviin.

...mutta onko mustan aiheuttaja oikeasti glysiinimutaatio?

A-lokuksen tutkimus muistutti äskettäin, ettei ominaisuuden kanssa yhdessä esiintyvä mutaatio välttämättä olekaan se tekijä, joka ominaisuuden aiheuttaa. Koiran K-lokuksen kopioluvussa on havaittu vaihtelua, eli joillakin koirilla on tästä geenistä useampia kappaleita. Tämä voisi tarkoittaa sitä, että useammasta geenistä valmistuu enemmän defensiiniä naksauttamaan pigmenttikytkimiä mustalle. Nykyisten geenitestien havaitsema glysiinimutaatio on kuitenkin luotettava markkeri K-lokuksen dominanttimustalle KB-geenimuodolle.... paitsi jos koira on brindle.

Käsi ylös, jos ensikosketuksesi kainkoiraan olivat nämä veljekset.

Entä brindleväritys?

Dominanttimustan toimintaidea liittyy brindleen siten, että mustien raitojen kohdalla solut oletettavasti käyttäytyvät KB-geenimuodon mukaisesti. Raidat ilmestyvät (ainakin japanilaisroduilla) A-lokuksen perusvärin päälle siten, että feomelaniinin pigmentoimat punakeltaiset alueet raidoittuvat. Käytännössä tämä tarkoittaa punaisilla koirilla koko koiraa mukaanluettuna urajiro, joka on hyvin vaaleaa punapigmenttiä. Black-and-tan-värisillä koirilla raidat ilmestyvät urajiroon ja punaruskeisiin tan-merkkeihin. Mutta raidoittuuko akitojen urajiro oikeasti? Brindleakitojen kuvissa rinta on usein valkoinen, mutta onko siinä kyse urajirosta vai valkokirjavuudesta eli pigmentin puuttumisesta? Entä erottuuko bläkkärin selän musta brindleraidoitus milloinkaan vielä mustempana kuin selkä muuten on?

Valkoinen tiikeri

...lienee koiran geeneillä mahdottomuus. Sekä akitalla että kainkoiralla on E-lokuksen alleelivalikoimassaan resessiivinen pikku-e. Kuten shiboilla, on genotyypin e/e akita ja kainkoira väriltään valkoinen. Väri on oikeasti punapigmenttiä, mutta sävyltään niin vaaleaa, että näyttää käytännössä valkoiselta. Mustia tiikeriraitoja ei voi ilmestyä valkoisen päälle, koska pigmenttikytkin on rikki ja pysyvästi vaalean punapigmentin tuotannon asennossa. K-lokuksesta valmistuva defensiini ja A-lokuksesta valmistuva pikkupeptidi ovat kyllä valkoisellakin koiralla olemassa, mutta ne eivät pysty sitoutumaan rikkinäiseen pigmenttikytkimeen. Toisin sanoen E-lokuksen ohjeilla valmistetaan toimivia (geenimuoto E) ja rikkinäisiä (geenimuoto e) pigmenttikytkimiä. Joillakin akitoilla brindleväritys näyttää mustavalkoiselta, mutta pohjavärinä on silloinkin hailakka punainen.

Sinäkin olet salaa tiikeriraitainen

Seuraa koko brindleväritykseen perehtymisen hilpein löytö: ilmiö nimeltä Blaschkon linjat. Blaschkon linjoilla tarkoitetaan ihosolujen piilevää kuviointia, joka muodostaa selän puolelle V:n muotoisia raitoja ja muualle loivempia S-kirjaimen muotoisia kiemuroita. Kuvioinnin uskotaan kuvastavan alkionkehityksen aikana tapahtunutta ihosolujen vaellusta, kun ihosolut lähtevät jakaantuen etenemään alkion ympäri. Yksinkertaistettuna kuvioinnin "pohja" on lähtöisin yhdestä kantasolusta ja "raidat" toisesta kantasolusta. Nyt, kuvittele tilanne, jossa toisessa ihosolujen kantasolussa olisi jokin pigmenttiin vaikuttava mutaatio. Raidat tulisivat näkyviin, koska kaikissa tämän kantasolun jälkeläisissä olisi sama mutaatio. Ihmisillä Blaschkon linjat tulevat käytännössä näkyviin erilaisten sairauksien yhteydessä.

Blaschkon linjaa seuraava ihomuutos. Kuva: Littlekidsdoc/Creative Commons Attribution-Share Alike 4.0

Brindleväritykselle Blaschkon linjat tarjoavat yhden mahdollisen selityksen sille, miksi raidat ilmestyvät sinne minne ilmestyvät. Ainakin niiden on katsottu muodoltaan seuraavan Blaschkon linjoja. Asiaa ei kuitenkaan ole sen kummemmin tutkittu tai vahvistettu. Tässä hypoteesissa osa soluista lukittuisi alkiovaiheessa käyttäytymään dominantin mustan KB-alleelin mukaisesti. Miten, sitä ei tarkalleen tiedetä. Ilmiö voi liittyä epigenetiikkaan, jossa solu hiljentää aktiivisia geenejä siten, ettei niistä valmistu proteiinia. Epigeneettiset muutokset eivät näy geenitesteissä, jotka etsivät vain DNA:n kirjaimia. Varsinaista brindlen alleelia (kbr) ei myöskään ole löydetty, vaikka se näyttää periytyvän ennustettavasti. Useimmat geenitestilaboratoriot tunnistavat K-lokuksesta vain KB-alleelin tai sen puuttumisen, mikä tulkitaan ky-geenimuodoksi. Tällaisissa geenitesteissä brindlet koirat näyttävät yleensä olevan genotyyppiä KB/ky. Asiassa riittää tutkittavaa, ja geenitestien kaupallisen suosion tuntien brindlen salaisuus saattaa ratketa nopeasti.

Kainkoirien genotyyppejä

Embark-geenitestin sivustolla on avoin tietokanta testatuista koirista. Kahdentoista kainkoiran perusteella mikään värigeenitesti ei pysty vielä selittämään raidoittumisen astetta. 10/12 kainkoiraa edustaa genotyyppiä E/E ay/ay, ja näihin näyttää kuvien perusteella mahtuvan koko kirjo mustatiikeristä punatiikeriin. Yksi erittäin tumma kainkoira kantaa valkoista (E/e ay/ay) ja yksi tumman punatiikerin näköinen bläkkäriä (E/E ay/at). K-lokuksen osalta testi antaa kaikille kainkoirille tulokseksi KB/ky.

Faktaa vai fiktiota: tiikeriraitainen akita on paras karhukoira

Hopeanuolen katsoneet tietävät, että tiikeriraitaisuus eli brindlekuvio tekee akitasta ylivertaisen karhukoiran. "Tiikeriraitainen on arvokas, parempaa karhunmetsästyskoiraa ei ole olemassakaan!" Väitettä voisi pitää puhtaasti draamallisena tropena. Erikoista kyllä, vuonna 2011 julkaistu tutkimus akitojen androgeenireseptorin muuntelusta ja sen yhteydestä koiran aggressiotasoon yhdistää epäsuorasti brindleväriset akitat ja korkeamman aggressiotason. Ilmiö koskee vain uroskoiria, mikä on loogista, sillä androgeenireseptori havaitsee testosteronin. Tutkimuksessa luonnekysely tehtiin vain punaisille akitoille, ja näillä korkeimmat aggressiopisteet saivat ne koirat, joilla androgeenireseptorista esiintyi ns. lyhyttä muotoa. Brindleillä tätä lyhyttä muotoa esiintyi huomattavasti enemmän kuin pitkiä muotoja. Androgeenireseptori näyttää sijaitsevan X-kromosomissa, joten sen ei pitäisi periytyä yhdessä K-lokuksen kanssa. Eli brindlen aiheuttava alleeli ja androgeenireseptorin lyhyt muoto eivät periydy yhtenä pakettina, mikäli brindle todella sijaitsee K-lokuksessa. Koirien sukulaisuuksista ei ollut tutkimuksissa puhetta. Mene ja tiedä, ehkä Daisuke on oikeassa ja kyseessä on jokin genetiikan vielä tuntemattomien ihmeiden todellinen ilmiö. Kahden punaisen akitan ei muutenkaan pitäisi voida saada keskenään brindleä pentua.

Päivittyy edelleen...

Lähteitä ja luettavaa

Linkage and Segregation Analysis of Black and Brindle Coat Color in Domestic Dogs (Kerns ym., 2007)

A β-Defensin Mutation Causes Black Coat Color in Domestic Dogs (Candille ym., 2007)

Mapping DNA structural variation in dogs (Chen ym., 2009)

Mutations in the Melanocortin 1 Receptor, Beta-Defensin103 and Agouti Signaling Protein Genes, and Their Association with Coat Color Phenotypes in Akita-Inu Dogs (Oguro-Okano ym., 2011)

Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita Inu (Konno ym., 2011)

Exploring Pleiotropic Functions of Canine β-Defensin 103: Nasal Cavity Expression, Antimicrobial Activity, and Melanocortin Receptor Activity (Aono ym., 2019)

Embark-tietokannan kainkoiria: https://embarkvet.com/resources/dog-breeds/kai-ken/

Suomenkielistä tietoa ja värivalokuvia kainkoirien erilaisista raidoituksista: https://gekkoono.weebly.com/kainkoiranvarit.html

Shibojen historiaa käsittelevissä koirakirjoissa ei voi välttyä 三河犬 :lta eli mikawankoiralta. Tarkka ilmaisu on yleensä "sekalainen mikawankoira", ja tekstin sävy on tällöin poikkeuksetta negatiivinen. Vaikuttaa siltä, että tätä koiratyyppiä on pidetty huomattavana uhkana japanilaisille alkuperäiskoirille, mutta mistä siinä oikeasti oli kyse? Tähän blogimerkintään on koottu sekalaisia mainintoja tästä mystisestä mikawankoirasta.

Koiria Mikawasta. Kuva mikawankoiria käsittelevästä osiosta kirjasta Vanha japanilainen koira - valokuva-albumi.
  • Ensinnäkin se Mikawa. Mikawan provinssi on vanha nimi nykyisen Aichin prefektuurin itäosalle. Kuten niin monilla Japanin alueilla, on sielläkin alkujaan ollut oma paikallinen koiransa, joka on ollut jonkin sortin kippurahäntäinen metsästyspystykorva ja jota on kutsuttu alkuperäiseksi mikawankoiraksi. Alkuperäinen mikawankoira on käytännössä kuollut jo sukupuuttoon.
  • Mikawan sijainti (punainen alue) on todennäköisesti iso osa ongelmaa. Naapurissa on ollut sekä Minon provinssi (jossa minoshibat) ja Shinshu (jossa shinshushibat). Sekoittumiseen on ollut lyhyt maantieteellinen matka.

  • Sitten se ongelma: kun japanilaisten alkuperäiskoirien suosio kasvoi 1900-luvun alussa, ilmestyi Mikawan alueelta risteyttämällä luotu koiratyyppi, jota markkinoitiin ja myytiin alkuperäiskoirana ympäri Japania. Syyt olivat ilmeisesti hyvin kaupallisia.

  • Risteytyksessä on käytetty ainakin kiinalaista chowchowta ja mahdollisesti shibaa tai jotakin keskikokoista japanilaisrotua.

  • Alkuperäistä mikawankoiraa ei ehkä ole ollut tässä risteymässä mukana ollenkaan. Paitsi sen epäonneksi nimessä.

  • Tämä mikawankoirasekoitus on kuvien perusteella näyttänyt suuren shiban ja pienen akitan välimuodolta. Sillä on kuvissa musta maski, usein otsakurttuja ja silmien osalta "epäitämainen ilme". Kuvista on hankala erottaa urajiroa.

  • Mielenkiintoista kyllä, "Vanha japanilainen koira - valokuva-albumi" mainitsee hybridin elinvoimaisuuden ja hedelmällisyyden leviämisen syyksi, eli ovatko nämä mikawankoirasekoitukset saaneet paljon suurempia pentueita kuin puhdasveriset alkuperäisrodut?

  • Chowchowlta mikawankoirasekoitus on oletettavasti perinyt kieleensä pigmenttitäplät.

  • Saman kirjan perusteella mikawankoirasekoituksen suosio ja leviäminen on herättänyt suuria tunteita Japanin alkuperäisrotujen suojelijoiden keskuudessa.
Tämän koiran yhteydessä mainitaan Mikawankoiran suojeluyhdistys (sekä lookin yhteneväisyys saman ajankohdan akitaan). Kuva mikawankoiria käsittelevästä osiosta kirjasta Vanha japanilainen koira - valokuva-albumi.
  • Jossakin vaiheessa on ollut olemassa Mikawankoiran suojeluyhdistys, joka sekin on keskittynyt tähän risteytysversioon.

  • "Sodan lopussa Mikawa-koiria toimitettiin yhä enemmän japanilaisina koirina koirakauppoihin valtakunnallisesti, ja yhä enemmän valtasi japanilaisia koiria, ja japanilaiset koirat lähes tuhoutuivat eri paikoissa sodan aikaisen karvan omistamisen vuoksi." (Asiat summaava Google Lens -käännös Vanhan japanilaisen koiran valokuva-albumista.)

  • Shiba Inu -kirjassa oli aiemmin puhuttu minoshiban risteytymisestä mikawankoirasekoituksen kanssa, kun kasvatuksessa on ollut tavoitteena väri. Tietty suklaanruskea väri on ollut läsnä myös mikawankoirasekoituksessa.

  • Mikawankoirasekoitus on ilmeisesti ollut jopa länsimaissa FCI:n hyväksymä koirarotu nimellä sanshu (Sanshu on toinen nimi Mikawan alueelle), kunnes rodun risteymäalkuperä on selvinnyt ja rotustatus mitätöity.

Pohdintaa mikawankoirasekoituksesta

Genetiikkafanin mielipide? Kiinnostavinta on tietenkin maininta hybridin elinvoimaisuudesta ja tähän viittaava mikawankoirasekoituksen nopea leviäminen. Japanilaisessa koirassa karsaasti katsotut ominaisuudet eli musta maski ja kielen pigmenttiläiskät, tai ainakin niiden välttely, selittyvät ehkä juuri mikawankoirasekoituksen vaikutuksella. Voi samalla kysyä, onko chowimaisen pörröturkin tavoittelu nykyshibassa historiallisesti sen järkevämpää. Mikawankoiran nimi sen sijaan näyttää kaipaavan puhdistusta, mistä johtuen otsikkoon on lisätty jälkikäteen lainausmerkit. Nythän alkuperäinen paikalliskoira on saanut niskaansa suotta negatiivisen latauksen siksi, että kaupallisen sekoituskoiran luominen sattui tapahtumaan Mikawan alueella. Nimitys sanshu on ehkä otettu käyttöön juuri sen takia.

Lähteet: "Vanha japanilainen koira -valokuva-albumi" -kirja (Google Lensin läpi) sekä Japanin ja Suomen Wikipediat (jossa lähteenä Desmond Morrisin suuri koirarotukirja).

Napin otsalla erottuu punaseesamishiballe ominainen kuvio. Kuva: Topi Kuusinen

Vuonna 2021 julkaistiin uusi tutkimus koiran värigenetiikan A-lokuksesta, jonka erilaiset geenimuodot liittyvät siihen, onko värillinen shiba punainen, seesami vai black & tan. Linkki. Tutkimuksen ehkä merkittävin uusi löytö oli geenimuoto, joka yhdistyi varjostuneen soopelin väritykseen eri roduilla. Shiboilla varjostuneen soopelin on ajateltu vastaavan sitä seesamia väritystä, jota kutsutaan myös punaseesamiksi, widow's peak -seesamiksi, Ay/at-seesamiksi tai Ays-seesamiksi. Nämä syntyjään punaiset pennut kehittävät mustan seesamikuorrutuksen päätä myöten noin puolen vuoden iässä siten, että otsalla näkyy yleensä tumma piikkikuvio. Joskus piikki voi kuitenkin näyttää enemmän palkilta. Tälle seesamityypille ei ole aiemmin ollut toimivaa geenitestiä, vaan testitulos on ollut sama kuin punaisella shiballa eli Ay.

Punaseesamishiboista on nyt tehty geenitutkimus, joka on edennyt vertaisarviointivaiheeseen ennen virallista julkaisua. Linkki. Tutkimustulokset viittaavat vahvasti siihen, että varjostuneen soopelin geenimuoto todella liittyy shiballa punaseesamiin väritykseen. Geenimuodolle on tässä tutkimuksessa annettu nimeksi Ays (Ay + shaded eli varjostunut, tosin shiban tapauksessa voi ajatella myös Ay + seesamina). Ays-seesamiväritys on resessiivinen punaiselle värille (Ay-geenimuoto), eli punainen shiba voi olla tämänkin seesamityypin kantaja ja periyttää sitä jälkeläisilleen. Jotta pennuista tulisi väritykseltään Ays-seesameja, tulee niiden tällöin periä toiselta vanhemmaltaan jokin muu kuin punainen geenimuoto Ay.

Shibojen toinen seesamityyppi, aw-seesami, perustuu aw-geenimuotoon. Tällä ns. villityypin geenimuodolla ei ole aiemmin ollut omaa mutaatiota, jolla sen olisi voinut tunnistaa, joten sen testaaminen on perustunut labratermein eliminaatioon. Uusien tutkimusten myötä myös aw on testattavissa oman promoottorinsa perusteella. Käytännössä asialla ei ole koiranomistajalle merkitystä, vaikka tutkimustulos onkin genetiikan kannalta jännittävä.

Shiban väriGeenimuotoPromoottorit
PunainenAyVP1 + HCP1
Ays-seesamiAysVP2 + HCP1
Aw-seesamiawVP2 + HCP2
BläkkäriatVP2 + HCP3
Uusista tutkimustuloksista tukea saanut taulukko liittyen shiban värigenetiikkaan ja A-lokukseen. Ylempänä oleva väri on dominoiva alempana olevien värien suhteen, eli punainen shiba voi kantaa mitä tahansa, Ays-seesami voi kantaa aw-seesamia tai bläkkäriä, aw-seesami voi kantaa bläkkäriä ja bläkkäri ei voi kantaa muuta kuin bläkkäriä. Lisäksi kaikki värit voivat kantaa valkoista. Shiballa valkoisen värin saa aikaan toinen lokus, E-lokus, jota ei käsitellä tässä.

Toistaiseksi punaseesamishiboja ja Ays-geenimuodon mahdollista kantajuutta voi geenitestata ainakin VetGenomics-laboratorion kaupallisella geenitestillä (A-lokus, laajennettu). https://vetgenomics.ru/coats

Bloginpitäjän mietteitä:

"Ehkä värigenetiikka vielä joskus pystyy selittämään myös arvoituksellisen Ays-seesamishiban ja kyseisen värityksen periytymistavan." Kirjoitin näin hiukan yli vuosi sitten ja arvelin, että ehkäpä kymmenen vuoden sisällä asiasta tulee jotain uutta tietoa. En olisi ikinä uskonut, että jo vuoden päästä on löytynyt sekä geenimuoto että analysoitu seesamit shibat. Aivan upeaa toimintaa tutkijoilta ja aktiivisilta seesamishibojen omistajilta!

Muutamia juttuja jää vielä tutkittavaksi. Yksi on valkoisen värin kantamisen vaikutus Ays-seesamin lookkiin. Näiden voisi olettaa olevan kauttaaltaan vaaleampia. Toinen on sashige eli osittainen musta sävytys punaisen päällä. Tämä geenisysteemi ei todennäköisesti pysty selittämään, miksi joillakin mustaa kantavilla punaisilla on selässä jopa näyttelytuomareita hämäävä sashigeväritys ja joillakin ei.

Äärimmillään tällainen musta kuorrutus ulottuu lähes oikeaoppisen seesamin tavoin pään yli siten, että otsalla erottuu haalea piikkikuvio. Onko tällaisella shiballa vielä omanlaisensa, tuntematon geenimuoto A-lokuksessa vai aiheuttaako ilmiön jokin muu tekijä? Kolmas asia on ikivanhat rekkarit ja tietokantamerkinnät, joissa Ays-periytymismalli ei aina näytä toimivan ihan odotetusti. A-lokus on arvaamaton, joten eiköhän sillä ole vielä uusia salaisuuksia tarjottavana.

Ja mistä tästä kaikesta on pohjimmiltaan kyse...

Pätkä A-lokuksen tuottamaa signaalimolekyyliä. Tämä pikkuinen ASIP komentaa pigmenttisoluja. Erilaiset turkin värit riippuvat siitä, missä ja milloin ASIP:ia valmistetaan. Kuva PDB:n entrystä 2L1J (Patel ym. 2010)

 

Mameshiba (oikealla) on aikuisena noin kymmenen senttiä tavallista shibaa matalampi. Kuva © 2021 Lyu, Feng, Zhu, Ren, Dang, Irwin, Wang and Zhang (Whole Genome Sequencing Reveals Signatures for Artificial Selection for Different Sizes in Japanese Primitive Dog Breeds)

Mameshibaksi kutsutaan shiban pienikokoista muunnosta (mame = papu, viittaus pienuuteen), jota tavataan lähinnä Japanissa. Mameshiboja pidetään kiistanalaisina monella tavalla: kasvatus viis veisaa shiban rotumääritelmän säkäkorkeudesta, ja pienikokoisuuteen pyrkiminen voi johtaa siihen, että jalostusvalinnoissa sivuutetaan muita tärkeitä asioita. Mameshiban suosio perustunee siihen, että pieni on söpöä. Shibojen alkuperäinen ja tärkein rotujärjestö Japanissa (NIPPO) on erikseen linjannut, ettei tunnusta mameshibaa shibaksi. Ainoa mameshiboja Japanissa rekisteröivä järjestö on The Kennel Club of Japan (KCJ), jota ei tule sekoittaa FCI:n alaiseen Japan Kennel Clubiin (JKC).

Mameshiboja koskeva konekäännös NIPPO:n nettisivulta.

Miten mameshiba eroaa geneettisesti tavallisesta shibasta?

Tämän blogipostauksen varsinainen aihe on uusi tutkimusjulkaisu, jossa on vertailtu mameshibojen ja normikokoisten shibojen genomeja. Lähtökohtana on ollut oletus, että mameshiba on sinänsä rotupuhdas shiba, jolloin eroavaisuudet geeneissä voisivat selittää nimenomaan kokoeroa. Huomioita tutkimuksesta:

  • Tutkimus on kiinalais-kanadalainen yhteistyö, ja julkaistu Frontiers in Genetics -tiedelehdessä, joka on ok-tasoinen lehti (vaikuttavuuskerroin neljän pintaan).
  • Tutkimuksessa mameshibaa kutsutaan omaksi alkuperäisrodukseen, mikä käy ilmi jo otsikosta "Whole Genome Sequencing Reveals Signatures for Artificial Selection for Different Sizes in Japanese Primitive Dog Breeds". Lukiessa tulee muutenkin vaikutelma, etteivät tutkijat ehkä ole olleet järin kiinnostuneita koirista tai roduista - kiinnostavaa on ollut shiban ja mameshiban kokoero, josta todella saa hyvän tutkimusidean kokogeenien etsintään.
  • Tutkimuksessa on otettu verinäytteet 59 normishibasta ja 35 mameshibasta. Näistä on sekvensoitu perimät (=selvitetty DNA:n emäsjärjestyksen kirjaimet) ja etsitty selkeitä eroja normishibojen ja mameshibojen välillä. Selkeä ero = jokin versio tietystä perimän kohdasta on rikastunut ja yleistynyt mameshiboissa jalostusvalinnan takia. Tuloksia on analysoitu useilla populaatiogenetiikan työkaluilla, jotka menevät tässä yli aiheen ja bloginpitäjän arviointikyvyn. Tutkimus on läpäissyt asiantuntijoiden vertaisarvioinnin hyvään lehteen, joten pitäkäämme geenituloksia luotettavina. Vakuuttavuutta lisää useiden eri analyysimenetelmien rinnakkainen käyttö.
  • Selkeitä eroja on todella löytynyt 12 perimäalueelta. Toisin sanoen tämä tutkimus on havainnut (jalostus)valintaan viittaavia alueita DNA:ssa, joissa tietynlainen versio on alkanut yleistyä mameshiboissa verrattuna normishiboihin. Kuvittele, että kasvattaisit pelkkiä bläkkärishiboja valtavalla koiramäärällä - tällöin mustien jalostuskoirien suosiminen aiheuttaisi tietenkin sen, että koirissasi alkaisi yleistyä mustan värin aikaansaava geeniversio. Sama on tapahtunut pienten mameshibojen kasvatuksessa, paitsi että kokoon vaikuttaa useampi kuin yksi geeni.
  • Tutkimustapa ei ole "geenintarkka", mutta koiran perimän tietokannasta voidaan katsoa näitä alueita tarkemmin.
  • Havaituille perimäalueille osuu yhteensä yhdeksän tunnettua geeniä, joista vain yksi (PRDM16) on aikaisemmin yhdistetty kokovaihteluun nisäkkäillä mutta ei vielä koirilla.
  • Jo aiemmin tunnetuista "koirien kokogeeneistä" tutkimus havaitsi kolme mätsäävää perimäaluetta (joilta löytyvät geenit IGF1SMAD2 ja LCORL, tuttuja MyDogDNA-profiileista), mutta ero ei ollut näiden osalta yhtä selkeä (ts. vain kaksi kolmesta analyysimenetelmästä havaitsi ne). Tulkinta: nämäkin geenit voivat selittää mameshiban pienuutta, mutta niiden vaikutus ei ole ollut ratkaiseva.
"Onpas monimutkaista!"

Lyhyt versio: tutkimuksessa löydettiin merkkejä geneettisistä jalostusvalintaeroista normishiban ja mameshiban välillä. Erot saattavat liittyä yhdeksään tunnettuun geeniin, joita voidaan pitää nyt uusina ehdokkaina koirien kokogeeneiksi. Tarkempia lisätutkimuksia näistä geeneistä on todennäköisesti tulossa lähivuosina. Populaatiogenetiikkaan perehtyneiden kannattaa tarkastella enemmän raakadataa. Tutkimuksessa ei ainakaan suoraan mainita, että mikään mameshiboissa selkeästi yleisempi perimän versio (eli oletettu kokogeenimuoto) löytyisi vain mameshiboilta mutta ei lainkaan normishiboilta. Koska mameshiban pienikokoisuus voi hyvinkin piillä useissa eri geeneissä, tavallisen kokoisille shiboille tuskin syntyy pennuksi varsinaista mameshibaa, ja poikkeava koko selittyy ennemmin kasvuhäiriöllä tai sairaudella.

Lähteitä ja luettavaa

Whole Genome Sequencing Reveals Signatures for Artificial Selection for Different Sizes in Japanese Primitive Dog Breeds (Lyu ym., 2021) https://pubmed.ncbi.nlm.nih.gov/34335687/

Punasolu eli erytrosyytti on pikkuruinen verisolu, jonka tärkein tehtävä on kuljettaa happea muille elimistön soluille. Kypsyessään punasolu menettää lähes kaikki soluelimensä ja alkaa täyttyä happea sitovalla hemoglobiinilla. Verrattaen yksinkertaisesta rakenteesta huolimatta shiban ja muiden itäaasialaisten rotujen punasoluista on löydetty hämmästyttävän monia ominaisuuksia, jotka erottavat ne länsimaisten koirien punasoluista. Jokaisen shibanomistajan on hyvä olla tietoinen tärkeimmistä eroista, sillä ne saattavat joissakin tilanteissa vaikuttaa oman shiban hyvinvointiin. 

Jono punasoluja hiusverisuonessa. Hemoglobiinin sisältämä rauta saa punasolut näyttämään tummilta elektronimikroskoopissa. Ylempänä näkyvät pyöreät "jutut" on muiden solujen tumia. Näyte on peräisin hiirestä, mutta tällaisella solutasolla koira lienee samanlainen.

Nurinkuriset ionit voivat johtaa virhediagnoosiin

Aasialaisilla roduilla - shibat mukaan lukien - tavataan punasoluja, jotka sisältävät paljon kaliumia ja vähän natriumia. Useimmilla koirilla näiden elimistön toiminnan säätelyyn käytettävien ionien suhde punasoluissa on juuri päinvastainen. Eron aiheuttaa punasolun pinnalle jäävä kuljetusproteiini, joka pumppaa kaliumia sisään ja natriumia ulos.

Vuoden 1997 tutkimuksessa yli kolmasosa japanilaisista shiboista minoshibaa lukuunottamatta edusti korkean kaliumin punasoluja. Ominaisuus periytyy resessiivisesti. Runsaskaliumisia punasoluja ei pidetä sinänsä terveysriskinä, mutta ne hajoavat herkemmin osmoottisen paineen vaikutuksesta eli silloin, kun punasolujen sisälle kertyy vettä. 

Korkean kaliumin punasolut voivat vuotaa kaliumia verinäytteen seerumiosaan ja aiheuttaa verikokeen mittaustulokseen jopa vaarallisen korkealta näyttävän kaliumarvon. Shibasanomien numerossa 1/2021 tutustuttiin Julia Suuriniemen artikkelissa tarkemmin ilmiöön nimeltä Pacific Rimism eli pseudohyperkalemia. Pseudohyperkalemian mahdollisuus on shiban tapauksessa huomioitava, ettei koiraa aleta turhaan lääkitä virheellisen verikoetuloksen perusteella.

Perusterveen shiban verikokeen tuloksia. Kaliumarvo on viiterajojen sisällä, joten verinäyte ei viitannut (pseudo)hyperkalemiaan. Punasoluihin liittymätön mutta huomionarvoinen tulos shiboilla on maksavauriota ilmentävä ALAT. Rodussa esiintyy geenimuotoa, joka laskee terveen koiran ALAT-arvoa normaalia alemmas. Jos tällaisen koiran ALAT-arvo kohoaa sairauden takia, voi se näyttää testituloksissa yhä "normaalin rajoissa olevalta".

Vahvuuksia ja heikkouksia

Korkean kaliumin punasolujen aineenvaihdunnassa on havaittu tiettyjä poikkeavuuksia. Ne pystyvät esimerkiksi vastustamaan L-sorboosia, joka vaurioittaa koiran tavallisia punasoluja. L-sorboosi on sokeri, jota esiintyy pieninä määrinä mm. pihlajanmarjoissa. 

Erikoista kyllä, koirilla punatautia aiheuttava alkueläin Babesia gibsoni lisääntyy erityisen tehokkaasti korkean kaliumin punasoluissa, jolloin taudin oireet ovat oletettavasti voimakkaammat. Kyseinen loinen leviää eräiden punkkilajien välityksellä ja on toistaiseksi melko harvinainen Pohjois-Euroopassa. 

Ei sipulia etenkään shiballe

Korkean kaliumin punasoluihin kertyy yleensä moninkertainen määrä glutationi-nimistä biomolekyyliä verrattuna tavallisiin punasoluihin. Punasoluissa glutationi toimii hapettumisenestoaineena, joka suojelee hapettumiselle herkkää hemoglobiinia. Hapettuminen liittyy kemian hapetus-pelkistysreaktioihin ja on nimestä huolimatta tässä eri asia kuin kuljetettavan hapen normaali sitoutuminen hemoglobiiniin. 

Sipuli ja valkosipuli ovat koirilta kiellettyjä ruoka-aineita juuri punasolujen vuoksi. Sipulien sisältämät rikkiyhdisteet aiheuttavat punasoluissa hapettumista, jolloin punasolut vahingoittuvat ja hajoavat. Seurauksena on pahimmillaan vaikea hemolyyttinen anemia. 

Vaikka ylimääräinen glutationi näyttää suojelevan punasoluja muilta hapettavilta yhdisteiltä, on sipuli omituinen poikkeus. Shibojen runsaasti kaliumia ja glutationia sisältävät punasolut ovat vielä herkempiä vaurioitumaan sipulin rikkiyhdisteiden takia kuin tavalliset punasolut. Tämä koskee sekä raakaa että kypsennettyä sipulia.

Kohtalokkaasta määrästä sipulia per painokilo on vaikea löytää tarkkaa tietoa, mutta vanha tapauskertomus vuodelta 1977 mainitsee korkean glutationin koiran, joka sairastui vakavasti syötyään vain puolikkaan keitetyn sipulin.   

Shiban punasolu virusinfektion hillitsijänä?

Punasolun pinnalta sojottaa ulospäin monenlaisia rasva- ja hiilihydraattiketjuja. Eräs näistä glykolipideistä sisältää siaalihappo-nimisen osan, josta koirilla on kahta eri muotoa: A-tyyppi ja G-tyyppi. Länsimaisten koirien punasolut edustavat A-tyyppiä, kun taas shiboilta ja muilta itämaisilta koiraroduilta hokkaidonkoiraa lukuunottamatta löytyy myös G-tyyppiä. G-tyyppi periytyy dominoivasti. 

Asian merkitys on epäselvä, mutta solun pinnan siaalihappojen tiedetään olevan taudinaiheuttajien suosimia tarttumiskohteita. Esimerkiksi koiran parvovirus sitoutuu paljon herkemmin punasolun G-tyyppiseen siaalihappoon kuin A-tyyppiseen. Parvovirus ei kuitenkaan pysty käyttämään punasolua isäntänään, sillä se tarvitsee lisääntymiseen tumallisen solun. 

On esitetty arveluja, että punasolujen siaalihapot toimisivat kärpäspaperin tavoin  "virusloukkuina" sitoessaan taudinaiheuttajia. Tällöin G-tyypin punasolut voisivat antaa shiballe edun parvoa vastaan, mikäli viruksen leviäminen verenkierron välityksellä hidastuu. Pelkän parvon takia G-tyypin punasolut eivät silti olisi ehtineet kehittyä, sillä koiran parvovirus on mutatoitunut kissan viruksesta tiettävästi vasta 1970-luvun lopulla.

"Mikään punasolu ei korvaa rokotusta! Onko omasi muuten ajan tasalla?"

Vitaminoitu punasolu torjuu happiradikaaleja

C-vitamiini eli askorbiinihappo on tärkeä biomolekyyli sekä kasvuiässä että hapetusvaurioiden torjunnassa. Koira pystyy valmistamaan C-vitamiininsa itse, joten se ei tarvitse sitä ravinnosta. Koiranpennuilla C-vitamiinin kulutus on aikuista suurempi, joten pennun punasolut sisältävät tietyn kuljetusproteiinin, jonka kautta soluun virtaa  C-vitamiinin "käytettyä" muotoa. Punasolun sisällä käytetty vitamiininjämä muutetaan takaisin toimivaksi C-vitamiiniksi. 

Normaalisti tämä kyky häviää pennun kasvaessa. Monilla shiboilla kyseinen kuljetusproteiini kuitenkin säilyy aikuisiällä, jolloin punasolut jatkavat toimintaansa C-vitamiinin kierrätyskeskuksina. Ominaisuus periytyy resessiivisesti ja on havaittu myös akitoilla. 

C-vitamiinia punasoluissaan kierrättävät shibat ovat todennäköisesti muita paremmin suojassa hapettavilta yhdisteiltä. Yhdessä punasolujen glutationi ja C-vitamiini muodostavat jo tuplavarmistuksen hapetusvaurioiden varalta. Ovatko tällaiset erikoisuudet yleistyneet itäaasialaisissa koirissa vain sattumalta vai jotakin tarkoitusta varten rotujen vuosituhansia kestäneen historian aikana? 

Perusterveen shiban verikokeen tuloksia, jatkuu. Punasolujen eli erytrosyyttien kokonaismäärä on suuri, mutta yksittäinen punasolu on kooltaan pienehkö (MCV-arvo, yksikkö femtolitroja). Pieneen punasoluun mahtuu vähemmän hemoglobiinia (MCH-arvo, yksikkö pikogrammoja).

Punasolujen kokovaihtelut luultavasti rotuominaisuus

Vaikuttaa siltä, että shiban punasolut voivat luonnostaan olla tavallista pienikokoisempia eli mikrosytoottisia. Tällöin verikokeen tuloksissa sekä punasolujen keskitilavuus että hemoglobiiniarvo voivat olla hiukan viitearvoja alhaisempia. Myös verihiutaleiden määrä voi alittaa viitearvon alarajan. 

18 shibaa kattavassa tutkimuksessa pienikokoisia punasoluja löytyi peräti 12 shibalta. Aasialaisissa roduissa esiintyy myös anisosytoosia, jolloin saman koiran punasoluissa havaitaan epätavallista koon vaihtelua. Toisaalta korkean kaliumin punasolut voivat olla kooltaan tavallista suurempia. 

Tutkitut shibat ovat olleet kliinisesti terveitä, joten oireettomalla koiralla pienet poikkeamat viitearvoista punasolujen mittaustuloksissa saattavat olla myös tyypillinen rotukohtainen löydös ilman, että asiasta tarvitsee huolestua.    

Lähteitä ja luettavaa

Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid (Löfling ym., 2013)

Evaluation of frequency and intensity of asymptomatic anisocytosis in the Japanese dog breeds Shiba, Akita, and Hokkaido (Aniolek ym., 2017)

Evaluation of microcytosis in 18 Shibas (Gookin ym., 1998)

Further Studies on the Red Cell Glycolipids of Various Breeds of Dogs. A Possible Assumption about the Origin of Japanese Dogs (Hashimoto ym., 1984)

Hereditary high-potassium erythrocytes with high Na, K-ATPaSe activity in Japanese shiba dogs (Maede ym., 1990)

Heredity of red blood cells with high K and low glutathione (HK/LG) and high K and high glutathione (HK/HG) in a family of Japanese Shiba Dogs (Fujise ym., 1997)

High concentration of blood glutathione in dogs with acute hemolytic anemia (Maede, 1977)

Incidence of dogs possessing red blood cells with high K in Japan and East Asia (Fujise ym., 1997)

Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations (Yamasaki ym., 2005)

Japanese Shiba dogs possessing erythrocytes with high Glut-1 activity and high ascorbic acid recycling capacity (Ogawa ja Hishiyama, 2011)

L-Sorbose does not cause hemolysis in dog erythrocytes with inherited high Na, K-atpase activity (Goto ym., 1992)

Pseudohyperkalemia eli "Pacific Rimism" (Julia Suuriniemi, Shibasanomat 1/2021)

Reduced glutathione accelerates the oxidative damage produced by sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs (Yamato ym., 1999)

Shiban värigenetiikassa ei toistaiseksi tunneta niitä geneettisiä tekijöitä, jotka saavat aikaa punaisten shibojen sävyerot kermanvärisestä ja oljenvaaleasta aina oranssiin ja tummaan punaruskeaan. Sama epätietoisuus liittyy shiban valkoiseen väriin. Shiballa sekä punainen että valkoinen väri ovat samaa punapigmenttiä eli feomelaniinia eri tummuusasteilla.

Uudessa tutkimuksessa (Slavney ym., 2021) on jäljitetty koiran genomista niitä mutaatioita, jotka voidaan yhdistää eri sävyjä edustaviin punaisiin koiriin. Mukana on ollut myös useita shiboja. Tutkimuksessa havaittiin viisi lokusta - kaksi jo tunnettua ja kolme uutta - jotka yhdessä selittivät 70 % feomelaniinin sävyeroista. Tulokset eivät shibojen osalta tarjoa selkeää selitystä sävyeroille, mutta tuovat silti mielenkiintoista tietoa rodussa esiintyvästä geneettisestä muuntelusta.

Tutkimus toteutettiin määrittämällä ensin soopelien (shiballa punainen) tai resessiivisten punaisten (shiballa valkoinen) koirien kuvista värin sävy kuusiportaisella asteikolla, jossa 1 on vaaleinta valkoista ja 6 tumminta punaista. Tuloksena on jo tässä vaiheessa kiinnostava taulukko. Useimmat shibat saivat sävyarvon 4 riippumatta siitä, olivatko ne valkoisen tai mustan kantajia tai eivät. Sen sijaan kaksi tumminta punaista shibaa on aineistossa ollut hiukan yllättäen valkoisen kantajia, jotka kantavat myös mustaa.

Tutkimuksen viisi varsinaista lokusta on toistaiseksi nimetty vain kromosomisijaintinsa mukaisesti (CFA = Canis familiariksen eli kesykoiran kromosomi). Niissä havaittu muuntelu on nimetty punaiseen väriin yhdistyväksi ja kermanväriseen yhdistyväksi. Yhteenvetona shiboista: yksi lokus eli CFA2 on ollut aineiston shiboilla vain kermanväriseen yhdistyvää muotoa, yksi lokus (CFA20) vain punaiseen yhdistyvää muotoa, yhdessä lokuksessa (CFA15) on melko tasaisesti molempia, ja loput kaksi (CFA18 ja CFA21) ovat useimmiten kermaa mutta rodussa esiintyy näistä myös punaista. Aineiston perusteella shibojen keskinäisiä sävyeroja voisi siis selittää 3/5 uudesta lokuksesta - loput kaksi näyttävät olevan samanlaiset kaikilla shiboilla.

Alla olevasta taulukosta voi halutessaan yrittää keksiä trendejä 😀 Lukemat 0, 1 ja 2 tarkoittavat punaiseen väriin yhdistyvän alleelin kopiolukua vastinkromosomeissa.

Havaittuihin lokuksiin liittyvistä geeniehdokkaista lisää myöhemmin.

"Hee hee! Uudesta hienosta tutkimuksesta selvisi vaan se, että olemme vieläkin ihan saman värisiä eri geeneillä! Mutta nyt valkoisen kantajakin voi virallisesti olla tummanpunainen."

Lähteitä ja luettavaa:

Five genetic variants explain over 70% of hair coat pheomelanin intensity variation in purebred and mixed breed domestic dogs https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250579

Geenitestisarjan kolmas ja viimeinen osa käsittelee shibojen geneettistä monimuotoisuutta. Tällä tarkoitetaan rodussa esiintyvien geenimuotojen runsautta. Vastakohtana on tilanne, jossa lähes kaikilla koirilla olisi samanlaiset, mahdollisesti vialliset geenimuodot elintärkeistäkin geeneistä. Tällöin peittyvästi periytyvät ongelmat alkaisivat yleistyä rodussa. Monimuotoisuuden vaaliminen auttaa näin vastustamaan sukusiitostaantumaa, joka uhkaa suljettuja rotukoirakantoja. Se hyödyttää myös jokaista syntyvää shibaa. Uusien tutkimusten perusteella shibojen monimuotoisuus on koirarotujen keskitasoa, mutta se on jakautunut rotuun epätasaisesti.   

Nykyiset shibat polveutuvat niistä koirista, joita alettiin NIPPO-rekisteröidä Japanissa 1920-luvulla. Jossakin vaiheessa rotuun ei enää otettu uusia koiria, ja uusien pentujen vanhemmat olivat itse NIPPO-rekisteröityjä kantakoirien jälkeläisiä. Shibojen geenipooli oli muodostunut ja sulkeutunut, minkä jälkeen samat geenimuodot ovat periytyneet uusille sukupolville sekoittuen uudenlaisiksi geeniyhdistelmiksi. 

Modernin shiban tärkeimmät kantakoirat on listattu Shibapedigree.comin erinomaiselle sukupuusivustolle. Nykyshiboilla nämä japanilaiset koirat odottavat noin 20 sukupolven päässä erittäin monen polveutumisketjun juurella.

Kennelliiton sukutaulussa näkyvä sisäsiitosprosentti voi kuitenkin näyttää nollaa siksi, että laskeminen ulottuu vain muutamien sukupolvien päähän ja olettaa, että vanhimmat esivanhemmat ovat keskenään täysin eri sukuisia. Shiboissa ja muissakin rotukoirissa kiertävät rodun kantakoirien geenimuodot - tähän perustuu rotujen olemassaolo ja säilyminen.  

Eriperintäisyys ylläpitää terveyttä 

Useimpien muiden eläinten tavoin shibapentu perii yhden setin geenejä emältään ja toisen isältään. Molemmissa seteissä on samat geenit, joilla on tietty nimi, sijainti ja tehtävä, mutta tarkemmin katsottuna geenit voivat esiintyä hiukan erilaisina geenimuotoina. Tällainen lisääntymistapa on kehittynyt eläimille jonkin syyn takia. On ollut edullista, että geenisettejä tulee kahdelta yksilöltä uudenlaisiksi yhdistelmiksi. 

Jos toisen vanhemman geenisetissä on rikkinäiseksi mutatoinut geenimuoto, pystyy toisen vanhemman toimiva geenimuoto yleensä pelastamaan tilanteen. Toisaalta jokin mutaatio voi joskus harvoin olla myös hyödyllinen tai muuttua tulevaisuudessa hyödylliseksi, mikäli elinolosuhteet muuttuvat. Lisäksi terveyden ja elinvoiman kannalta ajatellaan olevan hyvä, että jälkeläinen saa tietyistä geeneistä toimivat mutta hiukan erilaiset geenimuodot. Jos parittelevat yksilöt ovat sukulaisuuden takia keskenään liian samanlaisia, kahden eri geenisetin tarjoama turva ja hyöty menetetään.

Jälkeläisrajoitukset turvaavat monimuotoisuutta

Rotukoirien ongelmana pidetään sitä, että kantakoiria on ollut pieni määrä eivätkä kaikki niiden geenipooliin lahjoittamat geenimuodot ole pysyneet mukana. Toinen maailmansota ja tautiepidemiat romahduttivat monet rotukoirakannat. Näin kävi myös shiballe. Sittemmin rotujen geenimuotovalikoima on voinut yksipuolistua entisestään, kun pieni osa koirista on lisääntynyt "muidenkin edestä". Sekä ihmisten että eläinten arvioidaan kantavan perimässään aina muutamia haitallisia, resessiivisiä geenivirheitä - siis rikkinäisiä geenejä. Koirien tapauksessa ne voivat olla peräisin rodun kantayksilöiltä tai uusista mutaatioista, eikä resessiivistä geenivirhettä tyypillisesti pysty havaitsemaan päälle päin sen kantajasta. 

Kuva 1. Yksinkertaistettu kaavio kolmesta geenistä ABC nykyisessä shibapopulaatiossa, jossa koirat kuvaavat eri kantakoirista polveutuvia sukulinjoja. Koira on resessiivisesti periytyvät taudin suhteen terve, jos se perii edes toiselta vanhemmaltaan ehjän geenimuodon (vihreä). Jos aakkoset jatkuisivat eli geenejä olisi kuvassa useampia, olisi jokaisella koiralla todennäköisesti jokin geeni rikki eli jokin kirjain punaisena. Tämän takia mahdollisimman monen perusterveen ja elinvoimaisen shiban vihreät eri suvuista olisi hyvä pitää tasaisesti mukana. Samasta syystä ei tule olemaan realistista karsia geenitesteillä kaikkien mahdollisten sairauksien kantajia pois lisääntymästä - jäljelle ei jäisi lopulta yhtäkään koiraa. Shibasiluetin piirtänyt Taru M.

Kuvassa 1 kruunulla merkitty jalostuskoira on saanut monia jälkeläisiä. Myös sen jälkeläiset ovat lisääntyneet, jolloin rikkinäinen geenimuoto kuvitteellisesta C-geenistä (punainen) on alkanut yleistyä ehjien C-geenimuotojen (vihreät) kustannuksella. Kruunukoiralle sukua olevien kantajien jälkeläisellä on lopulta 25 % mahdollisuus periä sama viallinen geenimuoto kummaltakin vanhemmaltaan. Suomessa shibojen PEVISA-ohjelma rajaa yhden koiran jälkeläismääräksi 25 pentua. 

Elinvoimaisuuden lasku on hälytysmerkki

Suurin osa geeneistä ei liity koirien ulkomuodon yksityiskohtiin vaan koodittaa valmistusohjeita solun ja elimistön toiminnan kannalta tärkeille proteiineille. Viallinen geenimuoto, jolloin proteiini ei rakennu tai toimii huonosti, voi johtaa johonkin selkeään diagnosoitavaan sairauteen tai epämääräisempään elinvoiman laskuun. 

Viallisten geenimuotojen kertymistä pidetään syynä sukusiitostaantumaan, joka ilmenee esimerkiksi  lisääntymisvaikeuksina, kitukasvuisuutena, infektioherkkyytenä ja jopa kognitiivisten kykyjen heikkenemisenä. Vakavimmat geenivirheet ovat homotsygoottisina (peritty sekä emältä että isältä) letaaleja, jolloin tällaiset pennut kuolevat jo alkioina tai syntyvät elinkelvottomina, ja pentueluvut pienenevät.         

Toistojaksot tutkimuksen työkaluina

Shibojen geneettistä monimuotoisuutta on kartoitettu useammassakin tutkimuksessa (kts. Taulukko 1). Näissä on tarkasteltu monessa kohtaa koiran perimää sijaitsevia toistojaksoja, joiden pituus vaihtelee herkästi eri sukulinjoissa. Myös arkisempi geenitesti eli polveutumismääritys perustuu toistojaksoihin. Koska toistojaksot eivät täytä geenin määritelmää, kutsutaan niiden eri pituisia versioita tässä alleeleiksi eikä geenimuodoiksi.

Toistojaksoissa havaittava alleelien lukumäärä ja eriperintäisyys (eli heterotsygotia) ei suoraan kerro siitä, montako erilaista geenimuotoa rodussa on jostakin elintärkeästä geenistä. Asian merkitys on ehkä helpompi hahmottaa käänteisesti: jos kaikilla koirilla olisi samanlaiset, yhdeltä koiralta periytyneet versiot toistojaksoista, olisivat myös tämän koiran piilevät geenivirheet voineet levitä koko rotuun. Näin on käynyt esimerkiksi lunnikoirasyndroomasta kärsiville lunnikoirille. 

Taulukko 1. Koirarotujen monimuotoisuustutkimuksia shiboilla ja muilla roduilla. Populaatiogenetiikan termeillä on tarkemmat merkityksensä, mutta pikaohjeena: mitä isompi lukema, sitä parempi sekä tutkimuksen että monimuotoisuuden kannalta.

Shibojen monimuotoisuus keskitasoa mutta epätasaista

Shibojen geneettistä monimuotoisuutta on pidetty vuoden 2001 tutkimuksen (Kim ym.) perusteella varsin alhaisena myös muihin japanilaisrotuihin verrattuna. Uudemmat tutkimukset, joissa otoksena on ollut huomattavasti suurempi määrä shiboja sekä Japanista (Arata ym., 2016) että Yhdysvalloista (Veterinary Genetics Laboratories VGL, 2021), ovat löytäneet rodusta enemmän muuntelua. Näiden tutkimustulosten perusteella shibojen monimuotoisuus on toistojaksojen alleelien määrällä mitattuna ja muihin koirarotuihin verrattuna keskitasoa. Toisaalta on havaittu, ettei monimuotoisuus esiinny rodussa tasaisesti, sillä tietyt 3-4 alleelia ovat "yliedustettuina" ja löytyvät suurelta osalta tutkituista shiboista. Tämän joukon ulkopuolelle jää perimältään harvinaisempia shiboja. 

Tiikeri oli yksi kaikkein monimuotoisimpia tutkittuja shiboja entisessä MyDogDNA-tietokannassa. Vanhempiensa perusteella se on myös DLA-geenialueiltaan eriperintäinen. Tiikerillä ei ole vielä 5-vuotiaana ollut mitään allergioihin tai autoimmuunisairauksiin viittaavaa. Sillä tuntuu myös olevan rautainen vastustuskyky koirapuiston pöpöjä kohtaan. Toisaalta eriperintäisyys ei suojannut sitä kivesvialta.

Rotukoirat ja hukattu geeniperimä

VGL:n geenitestauksessa rotukoiria verrataan myös geneettisesti kaikkein monimuotoisimpiin kyläkoiriin maailman eri kolkista. Vertailun perusteella shiboissa arvellaan säilyneen noin 30 % koirille mahdollisesta muuntelusta. Lukema on korkeampi kuin länsigöötanmaanpystykorvilla (7 %), samaa tasoa kuin akitoilla (24 %) ja alhaisempi kuin toyvillakoirilla (60 %). Noin puolet tutkituista shiboista vastasi oman heterotsygotiansa määrässä sellaista pentua, joka syntyisi vapaasti lisääntyvien kyläkoirien joukossa täyssisarusten paritellessa.    

DLA-geenialue voi vaikuttaa pariutumiseen

VGL:n geenitesti tarkastelee erityisesti dog leukocyte antigen (DLA) -geenialuetta. DLA-geenit periytyvät yhdessä geenisetteinä. Tämä alue on erittäin mielenkiintoinen, sillä se liittyy immuunijärjestelmän toimintaan kaikilla selkärankaisilla eliöillä. Geenialueen yleisnimi on major histocompatibility complex (MHC) ja siinä tavataan enemmän muuntelua kuin missään muissa tunnetuissa geeneissä. Juuri näiden geenien osalta eri lajien naaraat suosivat itsestään poikkeavia parittelukumppaneita. Menettelyn ansiosta pennut perisivät vanhemmiltaan erilaiset setit DLA-geenejä, joten luonto näyttää pyrkivän heterotsygotian säilyttämiseen.

Taulukko 2. VGL:n tutkimuksen tuloksia 123 shiban DLA-geenialueista. Kolme valtavirtaversiota erottuu selvästi kummassakin DLA-luokassa. Yleisyys 0.004 tarkoittaa tässä sitä, että kyseinen DLA-versio on löytynyt yhdestä ainoasta shibasta.

Allergiaa ja autoimmuunisairauksia? 

DLA-geenialue liittyy siis immuniteettiin ja omien solujen erottamiseen tunkeilijoista. Joskus nämä toiminnot häiriintyvät. Koiraroduilta on tunnistettu lukuisia DLA-versioita, jotka yhdistyvät autoimmuunisairauksien ja atopian kohonneeseen riskiin. Myös shiboissa on tavattu kilpirauhasongelmia, vaikeita tulehduksellisia suolistosairauksia ja allergioita. 

VGL:n tutkimus on löytänyt shiboista 15 erilaista versiota luokan I DLA-geenisetistä ja 17 versiota luokan II DLA-geenisetistä (kts. Taulukko 2). Versiomäärien vertailua muihin rotuihin: länsigöötanmaanpystykorva 6 ja 4, suursnautseri 14 ja 15, ja kääpiövillakoira 33 ja 23. Monimuotoisuus ei DLA-geenienkään perusteella esiinny rodussa tasaisesti: yli 60 %:lla shiboista on jokin kolmesta yleisimmästä versiosta sekä luokan I että luokan II DLA-geeniseteistä. Ilmiö saattaa kuvastaa nykyshibojen historiaa, sillä Japanissa shiboista on määritetty 3-4 suurta sukulinjaa. Toisaalta kaikki harvinaisemmat geeniversiot eivät automaattisesti ole arvokkaampia kuin “tavisversiot” - ne saattavat olla harvinaisia myös siksi, että periytyvät yhdessä jonkin terveysongelman tai täysin epärodunomaisen piirteen kanssa.

DLA-geenisettien kokonaislukumäärä antaa osviittaa kantakoirista (ainakin 9-17), jotka ovat antaneet panoksensa tutkittujen shibojen geenipooliin. Tutkimuksessa käytetyn nimeämistavan vuoksi shibojen DLA-geeniseteistä ei ilmeisesti voi suoraan tunnistaa muissa tutkimuksissa havaittuja riskiversioita eri autoimmuunisairauksille. 

Onko shibasi monimuotoinen tai jopa harvinaisuus?

Shibojen monimuotoisuuden kartoitus VGL-geenitestillä jatkuu edelleen. Uusia tuloksia rodusta päivitetään tietokantaan aika ajoin. Sukulaisrotu akitan rotuyhdistys Suomessa kannustaa akitanomistajia VGL-geenitestaukseen. Suomalaisten shibojen monimuotoisuus voisi olla kiinnostava yhteinen tutkimusidea. Löytyykö shibojemme geeneistä esimerkiksi lainkaan muita luokan I DLA-versioita kuin yleisimmät 1054, 1091 tai 1191, ja onko jokin näistä muuttunut vallitsevaksi? Näyttääkö eriperintäisyys DLA-alueella suojaavan shiboja allergioilta ja autoimmuunisairauksilta?

Monimuotoisuuden osalta VGL-geenitestatut shibat saavat tuloksistaan tällaisen diplomin. Tämä shiba on DLA-geenialueiltaan eriperintäinen, eli sen geenisettien versiot (haplotyypit 1 ja 2) ovat erilaiset. Yksittäisten vastingeenien tapaan toinen haplotyyppi on peritty isältä, toinen emältä. Nämä DLA-versiot ovat rodussa yleisiä.

Jos oman shiban monimuotoisuus alkoi kiinnostaa, voi VGL-testikitin tilata kotiin nettiosoitteessa https://vgl.ucdavis.edu/canine-genetic-diversity/shiba-inu. Näyte otetaan itse hieromalla tikulla shiban posken sisäpintaa ja postitetaan kirjekuoressa.              

Geneettisen monimuotoisuuden vaalimisen etuja

  • Syntyvät shibapennut saavat jokaisesta tärkeästä geenistä ainakin yhden toimivan version.
  • Syntyvät shibapennut saavat erilaiset versiot myös sellaisista geeneistä, joiden kohdalla saattaa olla hyödyllistä, että vastingeeneinä on kaksi hiukan eri tavalla toimivaa versiota.  
  • Ainakin osa shiboista voi olla perinnöllisesti vastustuskykyisempiä ja säilyä hengissä, mikäli koiramaailmaan ilmestyisi "uusi penikkatauti" eli jokin vaarallinen ja herkästi leviävä tartuntatauti.
  • Jalostustyö on ylipäänsä mahdollista, jos ominaisuuksiin vaikuttavissa geeneissä esiintyy muuntelua. 

Lähteitä ja luettavaa:

An Estimate of the Average Number of Recessive Lethal Mutations Carried by Humans (Gao ym., 2015)

Association of DLA-DRB1 Alleles and Canine Atopic Dermatitis (Bozorgpanah ym., 2020)

DLA class II risk haplotypes for autoimmune diseases in the bearded collie offer insight to autoimmunity signatures across dog breeds (Gershony ym., 2019)

Genetic Variability in East Asian Dogs Using Microsatellite Loci Analysis (Kim ym., 2001)

Genetic Diversity Testing for Shiba Inu (Veterinary Genetics Laboratory, 2019)

https://www.akitayhdistys.fi/monimuotoisuustutkimus2

Koiranjalostus: perinnöllisyyden ja jalostuksen perusteet (Katariina Mäki ja Salme Mujunen, 2018)

Low neutral genetic variability in a specialist puffin hunter: the Norwegian Lundehund (Melis ym., 2013)

Microsatellite loci analysis for individual identification in Shiba Inu (Arata ym., 2016)

4


Shiban kolme perusväriä, punainen, seesami ja black & tan, määräytyvät A-lokuksen (ASIP) perusteella. Näitä värejä vastaavia geenimuotoja on kutsuttu nimillä Ay, aw ja at. Geenitestissä Ay ja at erottuvat tiettyjen mutaatioiden perusteella. Aw:llä ei ole omaa mutaatiota, joten se "tunnistetaan" rajaamalla muut vaihtoehdot pois. Punaseesamin värityksen oletettua geenimuotoa Ays ei ole geenitestillä pystytty erottamaan punaisen Ay-geenimuodosta. Uusien tutkimusjulkaisujen myötä on herännyt epäilys, että kyseiset mutaatiot olisivat ainoastaan sattumalta löytyneitä markkerimutaatioita, eli ne eivät saisi aikaan eroja geenimuotojen toiminnassa.

"Luovuta jo! Meidän väri on ja pysyy samana, vaikka geenit on melkein eri."

Uusi tutkimus koiran värigenetiikasta

Uudessa tutkimuksessa koirien A-lokuksesta on tunnistettu uusia säätelyelementtejä, jotka selittävät loogisesti myös sen, miksi punakeltainen tai musta pigmenttiväri ilmestyy koiran turkissa sinne minne ilmestyy. Säätelyelementit sijaitsevat A-lokuksen promoottorialueella, eli sillä alueella, joka määrää, milloin ja missä soluissa geeni kytkeytyy päälle. Kun A-lokus on "on-asennossa", karvaan pakataan punakeltaista pigmenttiä. Kun A-lokus on "off-asennossa", karvaan pakataan mustaa pigmenttiä. Huom! Valkoisen shiban kohdalla väriin vaikuttaa toinenkin lokus, mitä ei käsitellä tässä.

Näkemiin aw, tervetuloa VP2HCP2?

Uusia säätelyelementtejä on kaksi: ventraalipromoottori eli VP ("vatsapuolen promoottori") ja hair cycle promoter eli HCP ("karvankasvun syklin promoottori"). VP:stä on löydetty kaksi erilaista versiota, HCP:stä viisi. Numeroinniltaan ykköset toimivat A-lokuksen aktivoinnissa täysillä, kakkoset puoliteholla ja kolmoset, neloset ja vitoset eivät ollenkaan. Näiden versioiden yhdistelmästä riippuu se, miten tehokkaasti A-lokus kytkeytyy päälle. Sekä VP että HCP sijaitsevat siis peräkkäin samassa A-lokuksessa: A-lokuksen geenimuotoja (alleeleja) ovat säätelyelementtien suhteen esimerkiksi VP1+HCP1 (vastaisi Ay-geenimuotoa) ja VP2+HCP2 (vastaisi aw-geenimuotoa).

Merkittävin ero nykyiseen A-lokuksen värijärjestelmään on geneettinen ero puhtaan soopelin ja varjostuneen soopelin välillä. Aiemmin geenitestin tulos on ollut molemmille Ay. On mahdollista, että shiballa punaseesami/Ay-seesami väritys vastaisi muiden rotujen varjostunutta soopelia. Tutkijat ovat ehdottaneet A-lokuksen osalta seuraavaa jakoa eri väreihin:

Värityksen nimi VP-versio+HCP-versioEsimerkkirotu
Dominantti keltainenVP1HCP1Basenji
Varjostunut keltainenVP2HCP1Collie
AgoutiVP2HCP2Keeshond
Musta satulakuvioVP1HCP4Beagle
MustaselkäisyysVP2HCP3,4 tai 5Rottweiler
Uusia värigenetiikan termejä A-lokuksen osalta? Värit ovat dominanssijärjestyksessä, ylempänä listalla oleva peittää alemman vaikutuksen.

Entäs shibat?

Hyviä uutisia. Tutkimuksessa on analysoitu myös yksi shiba. 😀 Kyseessä on ollut bläkkäriä kantava punainen, joka on luokiteltu dominantiksi keltaiseksi. Sen A-lokuksesta on löydetty geenimuodot VP1HCP1 ja VP2HCP3. Tämä käy järkeen. Jos uusi luokittelu pitää paikkansa, voisivat shibat olla perusväreiltään ja genotyypeiltään:

Shiban väriA-lokuksen genotyyppi?Vastaisi
PunainenVP1HCP1/VP1HCP1
VP1HCP1/VP2HCP1
VP1HCP1/VP2HCP3
VP1HCP1/VP2HCP1?
AyAy
Ayaw
Ayat
AyAy?
Punainen sashige?VP1HCP1/VP2HCP3?Ayat?
Seesami (Ay)?VP2HCP1/VP2HCP1?
VP2HCP1/VP2HCP2?
VP2HCP1/VP2HCP3?
AyAy?
Ayaw?
Ayat?
Seesami (aw)VP2HCP2/VP2HCP2
VP2HCP2/VP2HCP3
awaw
awat
Black & tanVP2HCP3/VP2HCP3atat
Jos A-lokuksen säätelyalueet selittävät todella shiban värit, olisivat genotyypit eri väreissä oletettavasti tällaisia. Rodun geenipoolissa esiintyy yhden testatun shiban perusteella
ainakin geenimuotoja VP1HCP1 ja VP2HCP3.

Shiballa uusi värisysteemi voisi selittää punaseesamin ja sashigen eron, mikäli Ay-tyypin punaseesami edustaisi harvinaista "varjostunutta keltaista" (VP2HCP1) ja sashige "dominoivassa keltaisessa" ehkä esiintyvää vähäistä varjostusta silloin kun koira kantaa "mustaselkäisyyttä". Tällöin kahden Ay-seesamin yhdistelmästä voisi syntyä Ay-seesami, joka olisi perinteisessä geenitestissä muotoa AyAy. Tällaisia ei tiettävästi ole koskaan löytynyt, mutta harvassa ovat myös kahden Ay-seesamin (tai sellaisen kantajan) yhdistelmät. Taulukon kaataisi myös punainen pentu, joka syntyisi Ay-seesamin ja bläkkärin/aw-seesamin yhdistelmästä ELLEI asiaan vaikuta ratkaisevasti E-lokus. E-lokusta ei ole pohdittu tutkimuksessa. Sen sijaan Ay-seesamivärin periytyminen piilossa punaisissa shiboissa ja pomppaaminen ajoittain esiin saisi selityksen.

"Tiikeriraitojeni salaisuus? Tiedän, mutta en kerro."

Tutkimus on nyt läpäissyt vertaisarvioinnin ja julkaistu, joten jotkin kaupalliset geenitestilaboratoriot ottavat varsin todennäköisesti uudet A-lokuksen geenimuodot pian mukaan testipaneeliin. Shibojen (etenkin Ay-seesamien!) massatestausta odotellessa.

Shibojen fenotyyppivärien perinteiset nimet punainen, seesami ja bläkkäri pysyvät muuten ennallaan, vaikka genetiikan termit päivittyisivät. Myös genetiikan tuntemus päivittyy jatkuvasti, eikä geenien toiminnasta tiedetä vielä läheskään kaikkea.

Lähteitä ja luettavaa:

Dog color patterns explained by modular promoters of ancient canid origin (Bannasch ym., 2021).

Shiban verilinjalla (engl. bloodline) tarkoitetaan peräkkäisten sukupolvien ketjua, jossa tietyt ominaisuudet periytyvät vahvasti ja ilmentyvät monella seuraavankin sukupolven pennulla. Samaan verilinjaan kuuluvilla koirilla voi olla esimerkiksi tietynlainen ulkomuoto tai luonne. Shibakasvattaja Nobuo Atsumi (kennel Yokohama Atsumi) on kirjoittanut nettisivuilleen Nippo-tuomari Mitsuharu Kanahashin laatimasta tutkielmasta, joka käsittelee shibojen neljää tärkeintä japanilaista verilinjaa. Vaikka tutkielma on jo vuosikymmeniä vanha, pidetään näitä verilinjoja pohjana myös nykyisille linjoille.

Matsumaru Go Shinshuu Nakajima - yksi vanhoista kantauroksista. Matsumaru-linjan vahvuuksiin sanottiin lukeutuvan hyvä rakenne, väri ja rohkea luonteenlaatu.

Shibojen neljä suurta

Jokaisen verilinjan juurella on ollut jokin erityislaatuinen shibauros, jonka hyviä puolia on haluttu vakiinnuttaa jälkeläisiin sukusiitoksen eli lähisukuisten koirien risteyttämisen avulla. Linjojen nimet - Gen-linja, Korotama-linja, Matsumaru-linja ja Tenkou-linja - ovat peräisin näiltä uroksilta. Hyvien ominaisuuksien ohella linjoilla on omat periytyvät rasitteensa. Rotutyypilliseen ulkomuotoon pyrittäessä eri linjoja edustavien shibojen yhteensopivuus on vaihdellut. Kun sukupuussa kuljetaan taaksepäin, polveutuvat kaikki neljä verilinjaa silti myös samoista kantakoirista, joiden avulla rotu luotiin uudestaan toisen maailmansodan jälkeen.

Ichisuke Go Inoguchi. Korotama-linja kulki Ichisuken kautta, sillä Ichisuken on sanottu perineen hyvät ominaisuutensa isoisältään Korotamalta.

Historia elää nykyshiboissa

Linjat ovat luonnollisesti kehittyneet ja ristenneet vuosikymmenten aikana, eikä moni nykyinen shiba enää kuulu selkeästi yhteen tiettyyn linjaan edes Japanissa. Suomessa Kennelliiton jalostusstrategia pyrkii nykyisin turvaamaan koirien geneettistä monimuotoisuutta, joten voimakkaan sukusiitoksen käyttöä ei enää suositella. Shibojen klassiset verilinjat ovat kuitenkin olleet tärkeä osa rodun historiaa ja kehitystä. Näiden linjojen geenit ovat monistuneet ja säilyneet rodussa samalla kun monet muut geenit ovat voineet pudota pois. Löytyykö oman shibasi jalasta esimerkiksi valkoinen sukka? Sukka, tai paremminkin sen aiheuttava geenimuoto, on hyvinkin voinut kulkeutua shiballesi kymmenien koirasukupolvien kautta aina legendaariselta Korotamalta asti.

Lähteitä ja luettavaa

A Journey Beyond Shiba II (Nobuo Atsumi) http://yokohamaatsumi.the-ninja.jp/page002.html

The Total Shiba -kirja (Gretchen Hasket ja Susan Houser, 1997)

Kennelliiton yleinen jalostusstrategia 2018-2022 https://www.kennelliitto.fi/en/media/1029